Inversion of RBF networks and applications to adaptive control of nonlinear systems

نویسنده

  • L. Behera
چکیده

The paper investigates the application of inversion of a radial basis function network (RBFN) to nonlinear control problems for which the structure of the nonlinearity is unknown. Initially, the RBF network is trained to learn the forward dynamics of the plant. Two different controller structures are then proposed based on this identified RBFN model. In one scheme, a feedback control law is derived based on the input prediction by inversion of the RBFN model so that the system is Lyapunov stable. The second kind of controller structure predicts the feedforward control action, while the fixed controller actuates the feedback stabilising signal. An extended Kalman filtering based algorithm is employed to carry out the network inversion during each sampling interval. Two examples are presented to verify the proposed scheme. Simulation results show that the performance of the controller based on the proposed network inversion scheme is efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

On the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane

airplane in presence of asymmetric left-wing damaged. ‎Variations of the aerodynamic parameters, mass and ‎moments of inertia, and the center of gravity due to ‎damage are all considered in the nonlinear ‎mathematical modeling. The proposed discrete-time ‎nonlinear MRAC algorithm applies the recursive least ‎square (RLS) algorithm as a parameter estimator as ‎well as the error between the real ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995